Driven by ‘Smartphones,’ Package-on-Package Adoption and Technology Are Ready to Soar

As an enabling technology, package-on-package greatly expands device options by simplifying the business logistics of stacking and helps manage the cost impacts that derive from consumers’ increasing demands for multimedia processing and more memory.

By Lee Smith, Amkor Technology Inc. Chandler, Arizona [amkor.com]

Package-on-package (PoP) technology is designed for products that need efficient memory architectures including multiple buses and increased memory density with performance, while reducing mounted area.

PoP shipments more than doubled in 2007, driven by the strong adoption of smartphone applications where high semiconductor content puts PWB area at a premium. Adoption rates indicate all major smartphone makers will be using PoP technology by the end of this year.

Tear-down reports for high-performance smartphones, coupled with embedded memory forecasts, reveal a trend for the use of two PoP stacks. In use, the baseband modem and code memory are one stack, with the applications processor and operating system memory comprising the second.

40 Percent Growth Forecast
TechSearch International [techsearchinc.com] recently forecast 40 percent compound annual PoP growth through 2012 as summarized in Figure 1, which shows shipment growth outlook from 2007 through 2011.

Strong demand for smartphones is being forecast by industry analysts with an increasing number of business professionals and consumers demanding the high speed connectivity and multimedia content these feature-rich handsets provide.

Today, the cellphone market has split into two major segments: The ultra-low-cost handset segment for emerging markets (or new subscribers) and the feature-rich smartphone segment for subscriber upgrades in mature markets.

Market reports indicate there were over 3 billion mobile phone subscribers last year, with more than 1 billion using data services and more than 600 million multimedia users.

With the lines blurring between “on-the-go” professional and personal lifestyles, the mobile phone is becoming our most personal computer, providing rich multimedia content with anywhere e-mail and Internet access.

Tomi Ahonen of Ahonen Consulting [tomiahonen.com] said in 2005, “The mobile phone is still the only device that around 30% of the world’s population is carrying with them constantly.”

Recently, Ahonen reported that last year some 30 percent of Internet access was exclusively from mobile phones, with mobile being the majority user access in Japan, South Korea and India. As emerging markets mature, the cost of new features and media services will decline.

Feedback from designers indicates that PoP has become the 3D packaging platform of choice in feature-rich handsets. PoP has proven to provide the best solution to their challenges of increasing semiconductor content and design flexibility, while reducing cost, size, weight and time-to-market.

Market Development Model
To date, strong growth and high adoption in smartphones have outpaced expectations and overshadowed all other PoP applications.

To understand future market and technical requirements better, I evaluated the history and outlook for PoP against the classic technology adoption and market development life-cycle model.

Smartphones, such as this Nokia e90 Communicator, are a key driver in the PoP market. (Nokia)
With strong demand coming from system designers and the technology push coming from device suppliers, a global industry infrastructure with economies of scale has been established, enabling ease of adoption in new applications.

One unexpected new application is for embedded processing—not to solve form factor requirements, but due to electrical performance and memory architecture flexibility.

As PoP’s design, logistic and performance advantages are recognized in more applications; designers will drive PoP technology to higher density and performance requirements.

Advanced Features

This is already well underway in handsets, where advanced multimedia features are being demanded in both next-generation smartphones and a new class of computers known as ultra-mobile PCs.

These advanced handheld systems demand high performance signal processing and memory architectures with high speed anytime/anywhere wireless connectivity that will require higher density next generation PoP technologies.

The macro trends for PoP match those of handheld systems: smaller, thinner, and lighter, with higher performance at a lower total cost of ownership. But a clear understanding of the system and device drivers is required for selecting and developing a robust next-generation PoP technology platform.

The system and device drivers shown in Figure 3 can be combined into the following set of key, next-generation PoP technology requirements:

- High-density memory interface that will scale with memory architectures without requiring new stacking process development;
The current technologies can address a subset of the next-generation requirements but have limitations when applied across the range of requirements and future PoP applications.

They also present risks in maintaining low unit, development and capital equipment cost structures. Thus, a new technology is required that leverages mainstream package platform roadmaps following lessons learned from initial PoP development, where we applied a disruptive but proven technology (center pin gate molding) on the base technologies from mass market fine-pitch BGA (FBGA) and stacked die platforms allowed the PoP (structure 1) to be released to production just 15 months after concept definition, as reported earlier.\(^5\)

Next Generation PoP Solution

Following years of evaluation, feasibility studies and customer collaboration projects, details of a new structure expected to provide scalability to meet next generation PoP requirements were reported this year.\(^6\)

The disruptive, but proven technology applied here is laser ablation (referred to as through-mold via technology or TMV) to enable use of matrix-molded processing for the bottom package platform.

Figure 6 shows the high density 6-net daisy chain test vehicle reported at ECTC, designed to test the next-generation upper limits of package through PWB assembly and reliability requirements.

The benefits of TMV technology for next generation PoP requirements are:

- TMV technology removes the pitch-vs-package-clearance bottlenecks to support future memory interface density requirements. Figure 7 illustrates the PoP size reduction benefits, as TMV enables the memory interface to scale with CSP pitch reduction trends.
- TMV improves warpage control and bottom package thickness reduction requirements, as shown in Figure 5.

Next-Generation Solutions

- Extremely thin die (≤50µm) with thin die attach and ultra-low-loop wire bonds under very thin 0.2mm mold caps that can support 0.5mm pitch stacking. However, redesign and retooling is required below 0.5mm pitch.
- Build-up substrate technologies that provide a partial cavity structure for the die to recess below the memory interface stacking pads; but high cost, limited availability, design and material set restrictions limit this technology’s adoption.
- Adding solder balls to the top lands of the bottom package to allow use of current mold caps for finer pitch or taller stacked interface applications (associated with stacked die in the bottom package); this effectively extends the range of the current technology but does not address all of the next-generation requirements.
- Memory interface fan-in-like structures which apply technologies used in niche package-in-package structures, but have cost and stack-height restrictions; this may limit commodity memory and stack height requirements. It would also require a new class of extremely thin fan-in memory footprints which suppliers have to offer in addition to current MCP and top PoP components.
- Embedding the processor device in an organic build up substrate or rebuild/redistributed wafer-level process technology—each has serious cost, yield, infrastructure, new development, capital investment and cycle-time limitations.

Cost and Technical Limitations

Both of these bottom PoP structures have cost and technical limitations which would require major trade-off concessions to enable the application of current technologies to the range of next-generation PoP requirements. Technical evaluations and feasibility studies have been conducted on a host of solutions proposed for next generation requirements, by utilizing a balanced fully-molded structure.

- TMV provides an increased die to package size ratio.
- TMV supports wire bond, FC, stacked die and passive integration requirements.
- The TMV structure leverages strong technology roadmaps and high volume scale, from FBGA, stacked die, flip chip CSP, and SiP platforms. Integrates proven laser ablation technology available from a host of laser process equipment suppliers.
- TMV trials have shown improved board level reliability with fine pitch memory interfaces.

Summary

The current generation of PoP technologies will continue to see strong growth and new applications. However, to meet the complex set of next-generation PoP
requirements, a new higher density bottom package structure is needed.

After evaluation, we determined that TMV technology provides the best set of cost-, performance- and scalability attributes. TMV technology for PoP applications has met smartphone stacking and board level reliability requirements, as demonstrated in joint work with a leading OEM. Final qualification work is currently underway.

References

Figure 6. This is the high density, six-net daisy chain test vehicle reported at ECTC.

Figure 7. Size reduction benefits of PoP

Mr. Smith is a vice president of business development for Amkor Technology Inc., Chandler, Ariz. He has authored or co-authored numerous patents, technical papers and industry articles, including a chapter on stacked/3D packaging. With over 27 years of experience in 3D packaging, he is recognized for leading the definition, development and deployment of the current PoP technology. [ismsith@amkor.com]