Bottom PoP Technologies:
After three years of development in package stacking technology and infrastructure, Amkor launched the multiple award winning PSvFBGA platform in the 4th quarter of 2004. The next four years saw many new milestones, from the publication of JEDEC mechanical and electrical standards to a range of new customers and applications adopting PoP along with new structures in the PSvFBGA platform. By the end of 2006, PSvFBGA had become the fastest growing new package platform in Amkor’s four decade history, reflecting the strong industry adoption of PoP and Amkor’s technology leadership.

PSvFBGA supports single die, stacked die using wirebond or hybrid (FC + wirebond) stacks and has been applied for flip chip (FC) applications to improve warpage control and package integrity through test and SMT handling. As handheld microprocessors have transitioned to advanced CMOS nodes with higher speed cores with higher I/O, there has been a transition from wirebond to flip die designs. Flip chip enables the use of an exposed die bottom package that integrates the package stacking design features of PSvFBGA in a fcCSP assembly flow, which Amkor calls PSfcCSP. PSfcCSP has a thin exposed FC die enabling fine pitch stacked interfaces at 0.5mm pitch which is a challenge in a centered mold PSvFBGA structure.

Amkor is now entering the second generation for PoP applications where new memory architectures required in mobile multimedia applications, demand higher density stacked interfaces in combination with PoP mounted area and height reductions. The current PSvFBGA and PSfcCSP structures limit the ability of the memory interface to scale in density and pitch, thus a new bottom PoP structure was needed.

After three years of development, Amkor introduced the next generation PoP solution with new technologies to create interconnect vias through the mold cap, naming this technology through mold via (TMV®). TMV® technology provides a stable bottom package that enables use of thinner substrates with a larger die to package ratio. TMV® enabled PoP can support single, stacked die or FC designs. TMV® is an ideal solution for the emerging 0.4mm pitch low power DDR2 memory interface requirements and enables the stacked interface to scale with solder ball pitch densities to 0.3mm pitch or below.

The next few years promise to provide many new challenges and applications for PoP, as handheld multimedia applications continue to demand higher signal processing power and data storage capabilities. Amkor is committed to maintain strong development and production capabilities to ensure we are at the forefront in meeting next generation PoP requirements.

Applications:
PoP packages are designed for products requiring efficient memory architectures including multiple buses and increased memory density and performance, while reducing mounted area. Portable electronic products such as mobile phones (baseband or applications processor + combo memory), digital cameras (image processor + memory), PDAs, portable media players (audio / graphics processor + memory), gaming and other mobile applications can benefit from the combination of stacked package and small footprint offered by Amkor’s industry leading PoP family.

Features:
PSvFBGA Features:
- 10-15 mm body sizes toolied per product table
- Additional sizes based on demand
- Top package I/O interface 0.65 mm pitch accommodating 104 to 160 pin counts
- Wafer thinning / handling < 100 µm
- Mature PoP platform with consistent product performance and reliability
- Package configurations compliant with JEDEC standards
- Bottom PSvFBGA and top FBGA / Stacked CSP packages are well established in high volume production with multi-region and factory support
- Stacked package heights of 1.3mm to 1.5mm available in a variety of configurations
 (See Stack Up table on following page)

Reliability:
Amkor assures reliable performance by continuously monitoring key indices:

Package Level:
- Moisture Resistance Testing JEDEC Level 3 @ 260 °C x 4 refloows
- Additional Test Data 30 °C, 85% RH, 96 hrs @ 260 °C x 4
- Temp Cycle -55/+125 °C, 1000 cycles
- Temp/Humidity 85 °C, 85% RH, 1000 hours
- High Temp Storage 150 °C, 1000 hours
- HAST 130 °C, 85% RH, 96 hours

Board Level:
- Thermal Cycle -40/+125 °C, 1000 cycles

Package Dimensions:
- PSvFBGA 10 x 10mm to 15 x 15mm
- PSfcCSP 12 x 12mm to 13 x 13mm
- TMV® PoP 12 x 12mm to 14 x 14mm

Broad Benefits as an Enabling Technology:
PoP offers OEMs and EMS providers a flexible platform to cost effectively integrate logic + memory devices in a 3D stacked architecture. Integration through PoP provides technical and business / logistics benefits:
- Greatly expands device and supplier options by simplifying the business logistics of stacking
- Integration controlled at the system level to best match stacked combinations including memory architecture with the system requirements
- JEDEC standards ensure broad component availability
- Improving time-to-market, inventory management and supply chain flexibility
- Eliminates margin stacking and expands technology reuse
- Provides the lowest total cost of ownership where complex 3D integration of logic + memory is required

TMV® is a registered trademark of Amkor Technology, Inc.

VISIT AMKOR TECHNOLOGY ONLINE FOR LOCATIONS AND TO VIEW THE MOST CURRENT PRODUCT INFORMATION.
With respect to the information in this document, Amkor makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. Amkor shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify Amkor’s warranty on any product beyond that set forth in its standard terms and conditions of sale. Amkor reserves the right to make changes in its product and specifications at any time and without notice.
With respect to the information in this document, Amkor makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. Amkor shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify Amkor’s warranty on any product beyond that set forth in its standard terms and conditions of sale. Amkor reserves the right to make changes in its product and specifications at any time and without notice.
With respect to the information in this document, Amkor makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. Amkor shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify Amkor’s warranty on any product beyond that set forth in its standard terms and conditions of sale. Amkor reserves the right to make changes in its product and specifications at any time and without notice.